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S U M M A R Y  
This paper deals with a class of variational problems involving multiple integrals with one unknown function. Else than 
in the classical calculus of variations where the unknown function e.g. must be continuous and must take fixed values 
on the boundary, the unknown function must be a solution of a partial differential equation. 

Physically one could imagine a process, described by a partial differential equation and controlled by the boundary 
conditions, while this process must be optimized in some sense by choosing the best boundary values. 

1. Introduction 

The calculus of variations deals in general with the optimization of a functional within some 
class of functions. 

In the classical calculus of variations the class C1 is often used [1]. 
In the optimal control theory the problem with the class of admissible functions consisting 

of the solutions of a set of ordinary differential equations, with given fixed boundary conditions, 
is taken up. In this case, the set of ordinary differential equations contains some control varia- 
bles, that must be chosen in such a way that the functional reaches a relative extremum. A 
treatment of this problem is found in an article by R. Timman [3]. 

Extending this line we arrive at the subject of this paper. In sections 3 and 4, necessary 
conditions are derived, for a function u(~ 1 . . . . .  r which is a solution of a given linear elliptic 
partial differential equation with or without subsidiary conditions on the surface of the con- 
sidered domain in R~ to satisfy in order that this function attaches a relative extremum to the 
functional: 

c f" 

J{u(~)} --= J .G._t F(u, u~I .. . . .  u~, ,~ 1 . . . .  

To optimize in this case means, to find boundary conditions so that the solution defmed by this 
conditions and the differential equation, will attach a relative extremum to J {u (~)). In section 5 
the results of chapter 3 are given in the case of the Poisson equation. 

This is done for some well-known coordinate systems. 
Finally, some constructive applications will be found in sections 6 and 7. 

2. Definitions 

In this chapter some symbols are introduced, that will be used throughout this paper as 
defined here. 

G,F 
E1 

E2 

G is an open bounded domain in R, with piecewise smooth surface F. 
The set of all points of F where no normal vector exists. It is assumed that E1 
exists of a finite number of closed bounded domains in F with dimension less 
than n -  1. 
An arbitrary set of a finite number of closed, bounded domains in F with dimen- 
sion less than n -  1. 
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254 R. Delver 

{x}, {4},T 

L , M  

L ~ M '  
cl 

U 
a{u(4)} 

{x} Is a cartesian coordinate system in R,. 
{4} Is a curvilinear coordinate system in R,. 
T is a reversible one-to-one transformation, 
T: x~=x~{r ~ . . . . .  4"} =x'{4}. 
L is a second order linear partial differential operator in the cartesian coordinate 
system. 

L = a ~ k ( x ) ~ +  b i ( x ) ~  + c(x , 

where: aik(x) = aki(X); alk(x) ~ C2 [G u F], 
b*(~) ~ Cl [~ ~ r],  
c(x)eC [ G u t ] .  

It is assumed that the generalised Dirichlet problem for L and for its adjoint 
operator M has exactly one solution. 
The differential operators L and M, transformed for a coordinate system {4}. 
u(4) E Ci means:  u(4) e C~ [C {E2} c~/ ' ] ,  
while u (4), ur are bounded for {4} e r (i = 1, 2 . . . . .  n) 
u: {~(4): u(4)~ c l  ~/'{u(4))  = d(~(4)) ~ d(~)~ C[G,o r ] ) .  

J{u(4)} = l . .-I  F(u(4), u~, . . . . .  u~~ 4 a . . . . .  4")dO. 
G 

It is assumed that the integrand F has continuous first and second derivatives 
with respect to all its arguments. 
~(4) is a function u ( ( ) s  U which attaches a relative extremum to J{u(~)}. 

3. General Theory 

It is assumed that U contains a function fi(4) which attaches a relative minimum to J {u(4)}. 
Necessary conditions, that must be satisfied by such a function will be derived. 

For that purpose fi (~) is varied within U with eqS(~), e is an arbitrary small real number  and 

the varied function is called u(4). 

From u(4) ~ U follows : 

L{q~(4)} =0,  {4}eG,  (3.1) 
and 

~b (4) e C i .  (3.2) 

From (3.1) and (3.2)follows that ~b (4), {4} e G w F, is bounded. Consequently er (4)is an arbitrary 
small variation of fi(4). 

The increment of J{fi(4)} is; 

AS{a(4); e~b (4)} = S{a(4)+ eqS(4)} -S{u(~)} , 

= .[';'_ ~t [F(fi + e~b, t~ + e~br 4 ) -  F(fi, fie, 4)] dG, 

G [e{F~q~+ear ~br +e2{. . .  } +. . . ]dG 

The linear principle part or the variation of J{ar ~J {a(4); er (4)} is defined as: 

M{fi(4) ; ~r = e  ['G" I { F a ' r 1 6 2  (3.3) 

Hence : 

AJ{fi(4) ; ~b (4)} = 6J {fi(4) ; ~r (4)} + O (e2). (3.4) 
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The condition that fi(4) attaches a relative minimum to J{u(4)} is equivalent to: 

~J{a(4); ~(4)} _-__ 0 ,  (3.5) 

for all functions q5(4) satisfying (3.1) and (3.2). This necessitates the following equation to 
hold good for all q5(4 ) according to (3.1) and (3.2): 

el 6J{a(4), a~b(4)} = .;. F~'d)+Fae/~br 0. (3.6) 

Via the divergence theorem of Gauss and the second theorem of Green, this integral will be 
transformed into an integral over F. Put: 

F =  
n 

F ' =  a {F(u, .~l ,  u~~ , 4")}. 

F is a contravariant vector, so the divergence of F is: 

aFJ ~ J IF k V.F=FJ, j : ~ +  Ikj, ' 

hence : 

V" {q5 (r - q5 (r 'F} = qScj. F g . 

Substitution into (3.6) yields: 

1 e 6J{fi(r gqS(r = f.b.f {dp(r (3.7) 

From the divergence theorem of Gauss follows: 

f.g.f v. {(~(~)F}dG = f f  4~(~){n'F}dr , (3.8) 

where n is the outward unit normal vector. 
In cartesian coordinates the second theorem of Green exists. A variant of this theorem is : 

.~. ~(x)M{~(x)}dG = p t x j w d r ,  (3.9) 

with the conditions: 

o~(x) and fl(x) ~ C2 [G], 

Ov 
~' (x) = a '~(~) n~(~), {x} ~ r ,  

L{fl(x)} = 0 ,  {x}eG,  

(~) = o for {~} ~ r .  

The transformation of (3.9) on the coordinate system {4} results in: 

f "G'f fi(x(4))'M'{a(x(~)}dG = ~ fl(x(4)) O{a(~vQ)} dF , (3.10) 

�9 ~x i ~x k 
where: v' = A ~B (~) ~ ~ nk (X (~)), 
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0 2 
and: A ~a({) are the coefficients o f ~  in /2. 

The adjoint function ~({) of a function u({)e U is uniquely defined by: 

(r = 0 ,'{r (3.11) 

By virtue of (3.10), (3.1)and (3.11)it is found that: 

f f ~f a{O(~)}dF (3.12). .;. 4 ) ( r  4)(r " 

Substitution of (3.8) and (3.12) into (3.7) results in: 

1 6J{fi(~); e4)(~)} 4)(~) n'F + dC=O. (3.13) g 0v 
F 

This is the promised integral over F. The advantage of this expression is that 4) ({) is an explicit 
factor in the integrand, with which the freedom of 4) (0, for {3} e F, can be utilized in a simple~ 
way. Put' 

The integrand of (3.13) does not exist on E1 w E2. However, it can be easily concluded from the 
definitions that it is bounded on F and continuous on/~. 

Consequently, in (3.8), (3.12) and (3.13) F can be replaced by F. 
The condition that (3.13) is satisfied for all functions 4)(r Ci is equivalent to: 

n ' F +  ~{O(r - 0 ,  for {~}eiP 

Proof: _P is an open domain, consequently' at every point {~o} e/~ exists a finite domain 
A{{o} with: {{o}eA{~o} c/~. 

0{0(3)} # 0, say >0, for {{}={~1}e/~. Suppose : n .F + 0 ~  

In that case an open domain B{~,} exists with: {~,}eB{{,} c A{{,} while: 

n 'F  + 0{0(~)}0~ > 0, for {{}eB{{,} 

Let 4) (4) e C] satisfy : 

{ 4)(0 >0; 
4)(0=0; r .  

This function however, attaches a positive value to (3.13), which is a contradiction. If 

0{~({)} _ 0, (3.13)is satisfied. n'F + 0 ~  

This completes the proof. 

A function u({)e U that satisfies (3.6) or (3.13) is called a stationary solution. 
Now theorem I can be formulated: 

Theorem I. In order that u (3)~ U is a stationary solution with regard to J {u (~)}, it is necessary 
and sufficient that u (4)e U has an adjoint function ~ (~) which satisfies the overdetermined set of 
equations: 
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The optimization of a functional 257 

I rf M ~0(4)} = v . - v - F .  {4}ea 

(~) = 0, { 4 } e r ,  

, . r  + 0{0r _ 0, {~}~P. 
8v 

There are still some remarks to be made: 

1 
(a) V'F= F!j-- xF d 8~ ~ 

where : g = det (g ~ 
and: g ~j is the metric tensor. 

(b) In order that u(4)~ U has an adjoint function ~ (4)it is necessary that" 

It .;. F~dG = O . 

(3.14) 

Proof: 

F 

On the other hand application of (3.10) with fi(4)-- 1 leads to: 

f '~'f  M'{~b(~)}dG = ~ "  ~{~(4)} d F = ( ? v  - ~  n'FdF. 
F ic 

This completes the proof. 
(c) Though (3.14) has been derived with the use of the Dirichlet conditions, theorem I can 

also be used for other types of boundary value problems. 

4. General Theory with Subsidiary Conditions on the Surface 

It may happen that e.g. from technical considerations, the function u(4)e U, {4} e F, is not 
allowed to exceed some values or that this function has to take fixed values. 

For this problem also, conditions can be derived which a function fi(~) must satisfy. 
In this case the class of admissible functions is : 

W =  {u(~): u(~)sUc~a(~)< u(~)< b(~), {~}er} ,  

where a (4) and b (~) are two functions, defined on F, representing the upper and lower limitations 
of u(~), {~}eF, a(~)< b(~). 

If a function fi(~) is known, two domains F' and F" can be distinguished on F: 

F ' :  the set of all points {~}eF, with fi(~)=b(~), 

F": the set of all points {~}~F, with fi(4)=a(~). 

With help of F' and F" four domains a, fi, ? and 5 can be distinguished on F: 

= {c(r'~ r " ) }  ~ r, 
8= {c(r")} 

= {c(r')} ~ { r"~  r } ,  

6 =F'mF' .  (4.1) 

As the varied function 5(~) must be an element of W, the variation eq~ (4) has to satisfy" 
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{ L{qS({)} = 0 ,  for {r  

c l ,  

< 0 ,  for {{}eft ,  
eq~(4) > 0 ,  for {4}~7, 

( t = 0 ,  for {4}~6. (4.2) 

The condition that 9(4) attaches a relative minimum to J {u({)} is equivalent to: 

AJ{~(r ; eq~(~)} _-> 0,  (4.3) 

for all functions q5(4) satisfying (4.2). This necessitates the following equation to hold good 
for all eq5 (4), according to (4.2) with sufficiently small e. 

6J {fi(4) ; eq5 (4)} = e �9 F + - -  d r  > O, (4.4) 

F 

Analysis of (4.4), analogous to the analysis between (3.13) and theorem I, results in : 

Theorem II. In order that u(~)e W attaches a relative minimum to the functional J{u(4)} it is 
necessary that its adjoint function satisfies the overdetermined set of  equations: 

/ M'{6(~)} = F a - V ' F ,  for {4}~G, 

6(~) = 0 ,  for { ~ } e r ,  

n F +  0{~(~)} ~ < 0 ,  for { r  
" ~vv 0,  for {4}~fl, 

[ [ ; o  for (4.5) 

In the case of a relative maximum the symbols e and fl must be interchanged. 
The domains c~, fl and 7 will not be known until fi (4) is known. This complicates a constructive 

application of theorem II. 

5. The Equation Of Poisson 

In this chapter, the operator L is supposed to be the Laplace operator. 
For this operator the notation A is used, both in the system {x} and in the system {4}. 
The Laplace operator is self-adjoint. Consequently: 

A = L = s  

In the case of the Laplace operator holds: 

a ik (x) = (~ik, consequently: v = n .  

The set of equations (3.14) takes the more simple form: 

[ A {if(4)} = F , - V . F ,  {4}eG,  

= 0, {q r ,  

0. n . V +  - �9 

This set of equations will be specified for some well-known coordinate systems. 
In the case of orthogonal coordinate systems can be applied : 

~ - =  hi" h2... h, .  

The scale factors can be deduced from the expression of the square infinitesimal arc length : 

ds 2 = h~ (d4i) z . 

Journal of Engineerino Math., Vol. 3 (1969i 253-264 



The optimization of  a functional 259 

(a) Cartesian coordinates in Ru : 
0 (x) must satisfy' 

8 
A {O(x)} = F, - ~ ~ {Fu~,}, 

j = l  

0(x) = o, 

~ n  s -  F,,~ + = 0  

(b) Cylindrical coordinates in R3: 

41 = r ds 2= dr2 + r2 dO2 + dz 2, 
42= 0 

4~ = ~ ,/-~---- r , 

~b (r, 0, z) must satisfy 

A {0(r, 0, z)} = e�9 

{x} e C, 

{x} ~ r ,  

{x} ~ r .  

aF~ r aFuo aF, z 1 
ar 80 az r 

0 (r, 0, z) = 0, 

r , , ]  aO(r, 0, z) 
n" F~o + 8n - O, 

r,,o 

(c) Spherical coordinates in R3: 

I 
~1 = r dsZ=dr2 +rZ dO2 +r z sin 2 0 d r  

42= 0 
4 3 = 4~ ~ = r 2 sin 0 

~b (r, 0, ~) must satisfy: 

8F.~ 8Fuo 8F., 1 
{0(r, 0, ~) = r,  ar ~0 a~ r 

0(r, 0, r = o, 

[Furlatll(r,O,(P) O ' 
n" F~~ + an 

Lo  

FUr, for {~} e o ,  

for {{}EF, 

for {4} ~ r .  

Fur-  cotg O.Fuo, {4} ~ G,  

{~}er ,  

{~}er .  

6. A Constructive Method 

In this chapter a constructive method is developed for a collection of problems having the 
following restrictions : 

�9 G is a circle domain with radius R. 

�9 L = A  = ~r 2 + - r  ~r + ~  

�9 U = {u(r, 0): u(r, O)E Ci  m A {u(r, 0)} = f (r ,  O)c~ f(r ,  0)e C [G w r ] } .  

�9 F(u, u~, u o, r, O) = a(r, O)uZ+b(r, 0 ) g  +c(r ,  O)u~+d(r, O)uur 

q-e(r, O)uuo+ g(r , O)uruo+ h(r, O)u (6.1) 
+j(r, O)ur+k(r, O)uo+l(r, 0), 

with: a(r, O) . . . . .  l(r, O)eC [G w C] . 
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�9 A solution uo(r, 0) of A {u(r, 0)} can be found. 
This solution can be expanded in a twice term by term differentiable Fourier series" 

uo(r, O) = co(r) + ~ {c,(r)cos (nO) + d,(r) sin (nO)). (6.2) 
2 n = l  

�9 The adjoint function of any stationary solution can be expanded in a twice term by term 
differentiable Fourier series: 

tp(r, O) = xo(r) + ~ {x,(r) cos (nO)+y,(r) sin (nO)}. (6.3) 

The Fourier expansion of an arbitrary harmonic function w(r, 0), defined on G is" 

(1) w(r, O) = ~ + {a, cos(nO)+b, sin(nO)} 
n = l  

Consequently, the Fourier expansion of a function u (r, 0)E U is" 

 ,r0, ;{  (rJ } } - 2 + a, ~ +c,(r)  cos (nO) + b, +d,(r) sin (nO). 
1 n = l  

(6.4) 
In this expression only the constants ao, al, ..., ba, b2 . . . .  are unknown. 

At any stationary solution exactly one adjoint function ~, (r, 0) exists. This function satisfies : 

A {O(r, 0)} = F . -  Or {F,,} - {F"~ - r F"r' 

O(R, 0) = O. 

O{~p(R, 0)} 
Or - F.~IR (6.5) 

Substitution of (6.1) and (6.2)into (6.5) yields: 

A {0(r, 0)}= %(r)+[3o(r)ao+ 

O(R, O) = O, 

00 (R, O) 
Or - A~ + B~176 + 

+ 

i 
n = l  

n = l  

(ct,(r) + fi.(r)a, + 7,(r) b.) cos (nO) 

(6. (r) + e. (r) a, + ,~, (r) b.) sin (nO) 

(A, + B,a, + C,b,) cos (nO) 
n = l  

+ ~ (D,+E,a,+G,b.)sin (nO). (6.6) 
n = l  

The functions so(r), flo(r) . . . .  ,2,(r) and the constants Ao, Bo . . . . .  G, can be determined by 
performing the substitutions. In this chapter only the structure of (6.6) is of importance. 

From the Fourier expansion (6.3) follows: 

A {0(r, 0)} = 

0(R,  0} 

O{O(R, 0)} 

Or 

x;(r) + ~ x;(r) + ~ C.{~.(r)} cos (n0) 
n = l  

+ ~ L.{y,(r)} sin (nO), 
n = l  

xo(R) + ~ {x.(R) cos (nO) + y.(R) sin (nO)}, 
n = l  

X'o(R) + ~ {x'(R) cos (nO) + y" (R) sin (nO)}, 
n = l  

(6.7) 
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where/2, is the differential operator: 

dTr2+ r dr 

The Fourier expansion is unique. From comparison of (6.6) with (6.7) follows (6.8), (6.9) and 
(6.10). 

Xo(R) = o,  

x n(R) 0 ,  n = 1 , 2  . . . .  , 

yn(R) 0 ,  n = l , 2  . . . . .  (6.8) 

{ x{~(R) = Ao + Boao , 

x',(R) An+Bna,+Cnb, ,  n = l , 2  . . . .  , 

y,(R)" Dn+Ena,+Gnbn, n = l , 2  . . . . .  (6.9) 

{x{~(r) + x;  (r) 1 " - = e 0  (r)  + f l o  ( r ) .  ao, 
7 

gn{xn(r)}=O~n(r)-}-t~n(r)an-kTn(r)bn, for n = l ,  2 . . . . .  

Ln{y,(r)} = 6,(r)+e,(r)a,+2,(r)b, ,  for n=l ,  2 . . . . .  (6.10) 

The solutions of (6.10) are: 

"xo(r ) = Ko + N o In (r) +P{e0(r)} + ao" P {flo(r) } ,  

x,(7) = K,r" + N,. r-n+P{c~,(r)} + a~" P {fl,(r) } + b; P{y,(r)}, 

y, (r) = H,r '+Mnr-n+P{a,(r )}  +a," V {e,(r)} +b," P {2,(r)}, (6.11) 

where P, {e, (r)} are particular solutions of L, {x, (r)} = e, (7), etc. A {0 (r, 0)} has no singularities 
at the origin. 

From this follows: 

No=0,  N =0, M.=O. (n=1,2 .. . .  ) 

The unknown constants K0, a0, K,,/4,, a, and b, (n = 1, 2 . . . .  ), must be solved by imposing 
the boundary conditions (6.8) and (6.9) on (6.11). Substitution of(6.11) into (6.8) and (6.9) results 
for n=0,  in one set of two linear equations in ao and Ko and for n = l ,  n=2,  etc. in one set of 
four linear equations in a,, b,, K, and Hn. 

With any stationary solution and its adjoint function a set of numbers do, a,, Ko, K, and 
/-/~ (n = 1, 2 . . . .  ) exists, that has to satisfy the sets of linear equations. 

On the other hand, any set of numbers do, an, b,, Ko, K,  and H,, that is a solution of the sets 
of linear equations leads by substitution of this values into (6.4) and into (6.11) and (6.3) 
respectively to a stationary solution and its adjoint function. Consequently, the method delivers 
exactly all stationary solutions. 

Now three cases can be distinguished: 
(1) One or more systems are contradictory. 

Hence : 
No stationary solution exists. 

(2) One or more systems are dependent and no system is contradictory. 
Hence : 
There are an infinite number of stationary solutions. 

(3) All systems deliver unique solutions for do, an, b,, Ko, K, and/4 ,  (n = 1, 2 . . . .  ). 
Hence : 
Exactly one stationary solution exists. This function is an extremum if an extremum is 
known to exist. 

An application of this method is found in (7.2). 
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7 .  A p p l i c a t i o n s  

(1) Suppose: 

; j ; j  {au2(x)+b(x)u(x)+c(x)} dxl"' 'dx", 

where a is constant. 

- E 1 w g 2 is empty. 

- L = A  = ~ x l ~ + . . . +  . 

An adjoint function must satisfy: 

I A {0(x)} = F  - 0 j:~ ~ {F,~,} = 2au(x)+b(x), 

~,(x) = 0 ,  { x } e r ,  

O O(x)_ n f F , , , = O ,  {x}eF.  
Oil x 

All functions u(x)e U satisfy: 

A {u(x)} = a(x).  

From (7.1) and (7.2) follows: 

AA{O(x)} =2ad(x)+A{b(x)}, {x}eG,  

O(x)=O, {x}sT,  

a{0(x)} _ 0 {x}~T 
On 

R. Delver 

{x} e G, 

(7.1) 

(7.2) 

(7.3) 

- G is a circle domain with radius R. 
- E 1 w E z is empty. 

I02 1 0  1 0 1 1  
- L = A =  ~r 2 +-r ~r +-~ ~ " 

- U = {u(r, 0); A {u(r, 0)} = 8r sin 0 n u(r, O)e Ci}. 
A solution of A {u(r, 0)} = 8r sin 0 is: uo(r, 0) = r3sin 0. 

The Fourier expansion of a function u(r, O)e U is: 
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This is a well-posed boundary value problem for the biharmonic equation. (7.3) has exactly one 
solution, which is the only possible adjoint function. 

From A {0 (x)} = 2au(x)+ b(x) follows that exactly one stationary solution exists. 
As the structure of F(u(x), ux, x) ensures the existence of a minimum, this minimum is: 

A {~(x)} -b(x)  
fi(x) = 2a 

This result can e.g. be used in the quadratic approximation within the class U of a function 
~(x)~ v.  

(2) This example is an application of the constructive method from chapter 6. 
Suppose: 

- g{u(r, 0)} = o ~{u (r, O)+u~(r, O) + ug(r, O)}rdrdO. 
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ao r 3 { a. (nO) + b. sin (nO)} u(r, 0) = ~- + sin 0 + cos 
n = l  

With any stationary solution exists just one adjoint function 0(r, 0) that satisfies" 

r r 

O (R, 0) = 0 

0 {0(R, 0)} 
Or - F"rIR " 

Or" 

/A0(R, {0(r'0)0)}== 0, ~ + (r3-81)sin 0+ .=1 ~ {a. cos(nO)+b, sin(n0)} (R)" '  

n 
/0r(R, 0)= -3R 2 sin 0-=~1 {a. cos(nO)+b, sin(nO)} -R. 

From the direct Fourier expansion of O(r, 0) follows" 

A{O(r,O)}=x'~(r) + !x'(r)+ ~ L.{x.(r)}cos(nO)+ ~ L.{y.(r)} sin(nO), 
n = l  n = l  

O(R, O) = xo(R) + ~ {x,(R) cos (nO)+y,(R) sin 0,0)}, 
n = l  

(7.4) 

(7.5) 

(7.6) 

~br(R, O)= X'o(R) + ~ {x;(R)cos (nO)+y'n(R) sin (nO)}, 
n = l  

whereL.= ~ + r dr ~ 

From (7.6) and (7.7) follows: 

(7.7) 

, ,  1 , ao 
x~ + r x~ = 7 '  

/ r\" ,L.{x.(r)} = a . ( ~ ) ,  (n=l, 2, 3 .... ), 

Lx{yx(r)}=r3-8r+bl R, 

[ ( r y  ( n = 1 , 2 , 3 )  .... L,{y.(r)} =b, ~ , 

with the solutions" 

Xo(r )=Ko+N o In r+ao ~- , 

x.(r) = K.r" + N.r-" + a. [ 4R.~- + 1)j' 

( r3 ) 
Yl(r)=Hlr+Mlr-l +2AxrS-r3+bl ~ , 

y .  (r) = H.r"+ M.r-"+ b. [ 4RT(n~_ 1)J' 

(n= 1, 2 .... ), 

(7.8) 

(n=2, 3 .... ). (7.9) 
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From A {O(r, 0)} ~ C [G] follows: 

No=0 ,  N , = 0 ,  M , = 0 ,  (n=l ,  2 . . . .  ). 

Imposing the boundary conditions of (7.6) on (7.7) results in : 

= o ; xa (R)  = o ,  

n 
( n = 1 , 2 , . . . ) ,  

1 yl(R)=O;y' , (R)=-b. '~-  3R 2, 

s n (n=2,3, .) y,(R)=O;y R ) = - b , ' ~  . . . .  

From (7.9) and (7.10) follows" 

a. = O, (n=O, 1, 2 . . . .  ) 

b , = 0 ,  (n=l ,  2, 3 . . . .  ) 

bl - 2R5 + 12R3 
3R2+12 

Substitution of these values in (7.4) yields" 

fi(r, 0 ) = s i n 0  r 3 - r R  / 3 - - ~  . 

This function is generated by imposing the boundary function: 

fi(R, 0 ) = s i n 0  3R5+12 " 

(7.10) 

(7.11) 
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